Image Image Image Image Image

Presented at CHI 2012, Touché is a capacitive system for pervasive, continuous sensing. Among other amazing capabilities, it can accurately sense gestures a user makes on his own body. “It is conceivable that one day mobile devices could have no screens or buttons, and rely exclusively on the body as the input surface.” Touché.

Noticing that many of the same sensors, silicon, and batteries used in smartphones are being used to create smarter artificial limbs, Fast Company draws the conclusion that the market for smartphones is driving technology development useful for bionics. While interesting enough, the article doesn’t continue to the next logical and far more interesting possibility: that phones themselves are becoming parts of our bodies. To what extent are smartphones already bionic organs, and how could we tell if they were? I’m actively researching design in this area – stay tuned for more about the body-incorporated phone.

A study provides evidence that talking into a person’s right ear can affect behavior more effectively than talking into the left.

One of the best known asymmetries in humans is the right ear dominance for listening to verbal stimuli, which is believed to reflect the brain’s left hemisphere superiority for processing verbal information.

I heavily prefer my left ear for phone calls. So much so that I have trouble understanding people on the phone when I use my right ear. Should I be concerned that my brain seems to be inverted?

Read on and it becomes clear that going beyond perceptual psychology, the scientists are terrifically shrewd:

Tommasi and Marzoli’s three studies specifically observed ear preference during social interactions in noisy night club environments. In the first study, 286 clubbers were observed while they were talking, with loud music in the background. In total, 72 percent of interactions occurred on the right side of the listener. These results are consistent with the right ear preference found in both laboratory studies and questionnaires and they demonstrate that the side bias is spontaneously displayed outside the laboratory.

In the second study, the researchers approached 160 clubbers and mumbled an inaudible, meaningless utterance and waited for the subjects to turn their head and offer either their left of their right ear. They then asked them for a cigarette. Overall, 58 percent offered their right ear for listening and 42 percent their left. Only women showed a consistent right-ear preference. In this study, there was no link between the number of cigarettes obtained and the ear receiving the request.

In the third study, the researchers intentionally addressed 176 clubbers in either their right or their left ear when asking for a cigarette. They obtained significantly more cigarettes when they spoke to the clubbers’ right ear compared with their left.

I’m picturing the scientists using their grant money to pay cover at dance clubs and try to obtain as many cigarettes as possible – carefully collecting, then smoking, their data – with the added bonus that their experiment happens to require striking up conversation with clubbers of the opposite sex who are dancing alone. One assumes that, if the test subject happened to be attractive, once the cigarette was obtained (or not) the subject was invited out onto the terrace so the scientist could explain the experiment and his interesting line of work. Well played!

Another MRI study, this time investigating how we learn parts of speech:

The test consisted of working out the meaning of a new term based on the context provided in two sentences. For example, in the phrase “The girl got a jat for Christmas” and “The best man was so nervous he forgot the jat,” the noun jat means “ring.” Similarly, with “The student is nising noodles for breakfast” and “The man nised a delicious meal for her” the hidden verb is “cook.”

“This task simulates, at an experimental level, how we acquire part of our vocabulary over the course of our lives, by discovering the meaning of new words in written contexts,” explains Rodríguez-Fornells. “This kind of vocabulary acquisition based on verbal contexts is one of the most important mechanisms for learning new words during childhood and later as adults, because we are constantly learning new terms.”

The participants had to learn 80 new nouns and 80 new verbs. By doing this, the brain imaging showed that new nouns primarily activate the left fusiform gyrus (the underside of the temporal lobe associated with visual and object processing), while the new verbs activated part of the left posterior medial temporal gyrus (associated with semantic and conceptual aspects) and the left inferior frontal gyrus (involved in processing grammar).

This last bit was unexpected, at first. I would have guessed that verbs would be learned in regions of the brain associated with motor action. But according to this study, verbs seem to be learned only as grammatical concepts. In other words, knowledge of what it means to run is quite different than knowing how to run. Which makes sense if verb meaning is accessed by representational memory rather than declarative memory.

Researchers at the University of Tampere in Finland found that,

Interfaces that vibrate soon after we click a virtual button (on the order of tens of milliseconds) and whose vibrations have short durations are preferred. This combination simulates a button with a “light touch” – one that depresses right after we touch it and offers little resistance.

Users also liked virtual buttons that vibrated after a longer delay and then for a longer subsequent duration. These buttons behaved like ones that require more force to depress.

This is very interesting. When we think of multimodal feedback needing to make cognitive sense, synchronization first comes to mind. But there are many more synesthesias in our experience that can only be uncovered through careful reflection. To make an interface feel real, we must first examine reality.

Researchers at the Army Research Office developed a vibrating belt with eight mini actuators — “tactors” — that signify all the cardinal directions. The belt is hooked up to a GPS navigation system, a digital compass and an accelerometer, so the system knows which way a soldier is headed even if he’s lying on his side or on his back.

The tactors vibrate at 250 hertz, which equates to a gentle nudge around the middle. Researchers developed a sort of tactile morse code to signify each direction, helping a soldier determine which way to go, New Scientist explains. A soldier moving in the right direction will feel the proper pattern across the front of his torso. A buzz from the front, side and back tactors means “halt,” a pulsating movement from back to front means “move out,” and so on.

A t-shirt design by Derek Eads.

Recent research reveals some fun facts about aural-tactile synesthesia:

Both hearing and touch, the scientists pointed out, rely on nerves set atwitter by vibration. A cell phone set to vibrate can be sensed by the skin of the hand, and the phone’s ring tone generates sound waves — vibrations of air — that move the eardrum…

A vibration that has a higher or lower frequency than a sound… tends to skew pitch perception up or down. Sounds can also bias whether a vibration is perceived.

The ability of skin and ears to confuse each other also extends to volume… A car radio may sound louder to a driver than his passengers because of the shaking of the steering wheel. “As you make a vibration more intense, what people hear seems louder,” says Yau. Sound, on the other hand, doesn’t seem to change how intense vibrations feel.

Max Mathews, electronic music pioneer, has died.

Though computer music is at the edge of the avant-garde today, its roots go back to 1957, when Mathews wrote the first version of “Music,” a program that allowed an IBM 704 mainframe computer to play a 17-second composition. He quickly realized, as he put it in a 1963 article in Science, “There are no theoretical limits to the performance of the computer as a source of musical sounds.”

Rest in peace, Max.

UPDATE: I haven’t updated this blog in a while, and I realized after posting this that my previous post was about the 2010 Modulations concert. Max Mathews played at Modulations too, and that was the last time I saw him.

I finally got around to recording and mastering the set I played at the CCRMA Modulations show a few months back. Though I’ve been a drum and bass fan for many years, this year’s Modulations was the first time I’d mixed it for others. Hope you like it!

Modulations 2010
Drum & Bass | 40:00 | May 2010

Audio clip: Adobe Flash Player (version 9 or above) is required to play this audio clip. Download the latest version here. You also need to have JavaScript enabled in your browser.

Download (mp3, 82.7 MB)


1. Excision — System Check
2. Randomer — Synth Geek
3. Noisia — Deception
4. Bassnectar — Teleport Massive (Bassnectar Remix)
5. Moving Fusion, Shimon, Ant Miles — Underbelly
6. Brookes Brothers — Crackdown
7. The Ian Carey Project — Get Shaky (Matrix & Futurebound’s Nip & Tuck Mix)
8. Netsky — Eyes Closed
9. Camo & Krooked — Time Is Ticking Away feat. Shaz Sparks

Over the last few days this video has been so much bombshell to many of my music-prone friends.

It’s called the Multi-Touch Light Table and it was created by East Bay-based artist/fidget-house DJ Gregory Kaufman. The video is beautifully put together, highlighting the importance of presentation when documenting new ideas.

I really like some of the interaction ideas presented in the video. Others, I’m not so sure about. But that’s all right: the significance of the MTLT is that it’s the first surface-based DJ tool that systematically accounts for the needs of an expert user.

Interestingly, even though it looks futuristic and expensive to us, interfaces like this will eventually be the most accessible artistic tools. Once multi-touch surface are ubiquitous, the easiest way to gain some capability will be to use inexpensive or open-source software. The physical interfaces created for DJing, such as Technics 1200s, are prosthetic objects (as are musical instruments), and will remain more expensive because mechanical contraptions will always be. Now, that isn’t to say that in the future our interfaces won’t evolve to become digital, networked, and multi-touch sensitive, or even that their physicality will be replaced with a digital haptic display. But one of the initial draws of the MTLT—the fact of its perfectly flat, clean interactive surface—seems exotic to us right now, and in the near future it will be default.

Check out this flexible interface called impress. Flexible displays just look so organic and, well impressive. One day these kinds of surface materials will become viable displays and they’ll mark a milestone in touch computing.

It’s natural to stop dancing between songs. The beat changes, the sub-rhythms reorient themselves, a new hook is presented and a new statement is made. But stopping dancing between songs is undesirable. We wish to lose ourselves in as many consecutive moments as possible. The art of mixing music is to fulfill our desire to dance along to continuous excellent music, uninterrupted for many minutes (or, in the best case, many hours) at a time. (Even if we don’t explicitly move our bodies to the music, when we listen our minds are dancing; the same rules apply.)

I don’t remember what prompted me to take that note, but it was probably not that the mixing was especially smooth.



A tomato hailing from Capay, California.

LHCSound is a site where you can listen to sonified data from the Large Hadron Collider. Some thoughts:

  • That’s one untidy heap of a website. Is this how it feels to be inside the mind of a brilliant physicist?
  • The name “LHCSound” refers to “Csound”, a programming language for audio synthesis and music composition. But how many of their readers will make the connection?
  • If they are expecting their readers to know what Csound is, then their explanation of the process they used for sonification falls way short. I want to know the details of how they mapped their data to synthesis parameters.
  • What great sampling material this will make. I wonder how long before we hear electronic music incorporating these sounds.

The Immersive Pinball demo I created for Fortune’s Brainstorm:Tech conference was featured in a BBC special on haptics.

I keep watching the HTC Sense unveiling video from Mobile World Congress 2010. The content is pretty cool, but I’m more fascinated by the presentation itself. Chief marketing officer John Wang gives a simply electrifying performance. It almost feels like an Apple keynote.

The iFeel_IM haptic interface has been making rounds on the internet lately. I tried it at CHI 2010 a few weeks ago and liked it a lot. Affective (emotional haptic) interfaces are full of potential. IFeel_IM mashes together three separate innovations:

  • Touch feedback in several different places on the body: spine, tummy, waist.
  • Touch effects that are generated from emotional language.
  • Synchronization to visuals from Second Life

All are very interesting. The spine haptics seemed a stretch to me, but the butterfly-in-the-tummy was surprisingly effective. The hug was good, but a bit sterile. Hug interfaces need nuance to bring them to the next level of realism.

The fact that the feedback is generated from the emotional language of another person seemed to be one of the major challenges—the software is built to extract emotionally-charged sentences using linguistic models. For example, if someone writes “I love you” to you, your the haptic device on your tummy will react by creating a butterflies-like sensation. As an enaction devotee I would rather actuate a hug with a hug sensor. Something about the translation of words to haptics is difficult for me to accept. But it could certainly be a lot of fun in some scenarios!

I’ve re-recorded my techno mix Awake with significantly higher sound quality. So if you downloaded a copy be sure to replace it with the new file!

Awake

Awake
Techno | 46:01 | October 2009

Audio clip: Adobe Flash Player (version 9 or above) is required to play this audio clip. Download the latest version here. You also need to have JavaScript enabled in your browser.

Download (mp3, 92 MB)


1. District One (a.k.a. Bart Skils & Anton Pieete) — Dubcrystal
2. Saeed Younan — Kumbalha (Sergio Fernandez Remix)
3. Pete Grove — I Don’t Buy It
4. DBN — Asteroidz featuring Madita (D-Unity Remix)
5. Wehbba & Ryo Peres — El Masnou
6. Broombeck — The Clapper
7. Luca & Paul — Dinamicro (Karotte by Gregor Tresher Remix)
8. Martin Worner — Full Tilt
9. Joris Voorn — The Deep

I recently started using Eclipse on OS X and it was so unresponsive, it was almost unusable. Switching tabs was slow, switching perspectives was hella slow. I searched around the web for a solid hour for how to make it faster and finally found the solution. Maybe someone can use it.

My machine is running OS X 10.5, and I have 2 GB of RAM. (This is important because the solution requires messing with how Eclipse handles memory. If you have a different amount of RAM, these numbers may not work and you’ll need to fiddle with them.)

  • Save your work and quit Eclipse.
  • Open the Eclipse application package by right-clicking (or Control-clicking) on Eclipse.app and select “Show Package Contents.”
  • Navigate to Contents→MacOS→, and open “eclipse.ini” in your favorite text editor.
  • Edit the line that starts with -”XX:MaxPermSize” to say “-XX:MaxPermSize=128m”.
  • Before that line, add a line that says “-XX:PermSize=64m”.
  • Edit the line that starts with “-Xms” to say “-Xms40m”.
  • Edit the line that starts ith “-Xmx” to say “-Xmx768m”.
  • Save & relaunch Eclipse.

Worked like a charm for me.

Scroll to Top

To Top

cognition

Learning nouns activates separate brain region from learning verbs

On 11, Aug 2011 | No Comments | In cognition, language, neuroscience | By Dave

Another MRI study, this time investigating how we learn parts of speech:

The test consisted of working out the meaning of a new term based on the context provided in two sentences. For example, in the phrase “The girl got a jat for Christmas” and “The best man was so nervous he forgot the jat,” the noun jat means “ring.” Similarly, with “The student is nising noodles for breakfast” and “The man nised a delicious meal for her” the hidden verb is “cook.”

“This task simulates, at an experimental level, how we acquire part of our vocabulary over the course of our lives, by discovering the meaning of new words in written contexts,” explains Rodríguez-Fornells. “This kind of vocabulary acquisition based on verbal contexts is one of the most important mechanisms for learning new words during childhood and later as adults, because we are constantly learning new terms.”

The participants had to learn 80 new nouns and 80 new verbs. By doing this, the brain imaging showed that new nouns primarily activate the left fusiform gyrus (the underside of the temporal lobe associated with visual and object processing), while the new verbs activated part of the left posterior medial temporal gyrus (associated with semantic and conceptual aspects) and the left inferior frontal gyrus (involved in processing grammar).

This last bit was unexpected, at first. I would have guessed that verbs would be learned in regions of the brain associated with motor action. But according to this study, verbs seem to be learned only as grammatical concepts. In other words, knowledge of what it means to run is quite different than knowing how to run. Which makes sense if verb meaning is accessed by representational memory rather than declarative memory.

Tags | , ,

03

Sep
2009

One Comment

In cognition
language
music

By David Birnbaum

Organ-ize

On 03, Sep 2009 | One Comment | In cognition, language, music | By David Birnbaum

I was inspired to research the words “organ” and “organized” after I read a statement made by Merleau-Ponty scholar Lawrence Hass that “perceptions are organized (organ-ized) information.” He included the hyphen to emphasize a very interesting point: it may be that our ability to organize our thoughts is rooted in a concrete aspect of embodiment. We have specialized organs and neural pathways for particular ranges of wave frequencies (light for the eyes, sound for the ears, vibration for the skin). So, it’s plausible that organization of thought may have its roots in the configuration of our sense organs. Astounding!

Here’s a typical definition of organize:

  • v. arrange in an orderly way
  • v. to make into a whole with unified and coherent relationships (yourdictionary.com)

These definitions aren’t satisfying. What makes an organization orderly, unified, and coherent? The definition Hass implies is much more illuminating: to be organized is to be divided according to the sense organs of a perceiver. Now we’re getting somewhere!

But moving in a slightly different direction, what the hell are we doing playing a musical instrument called an “organ”? And what does all this mean for Edgard Varèse’s famous definition of music as “organized sound”?

organ

  • n. from the Greek organon meaning “implement”, “musical instrument”, “organ of the body”, literally, “that with which one works” (Online Etymology Dictionary)
  • n. an instrument or means, as of action or performance
    (Dictionary.com)

Substituting “organ” in Varèse’s famous definition with these, the word “music” means:

  • music is sound with which one works
  • music is sound that is a means of action or performance

For the first time I understand what Varèse meant when he said music is “organized sound.” We use the word music to mean sound that is utilized by someone to work or perform. Nothing more, nothing less.

Tags | , , , , , ,

31

Jul
2009

No Comments

In cognition
neuroscience

By David Birnbaum

Put yourself in my position

On 31, Jul 2009 | No Comments | In cognition, neuroscience | By David Birnbaum

…so you can understand how I feel:

“Our language is full of spatial metaphors, particularly when we attempt to explain or understand how other people think or feel. We often talk about putting ourselves in others’ shoes, seeing something from someone else’s point of view, or figuratively looking over someone’s shoulder,” Sohee Park, report co-author and professor of psychology, said. “Although future work is needed to elucidate the nature of the relationship between empathy, spatial abilities and their potentially overlapping neural underpinnings, this work provides initial evidence that empathy might be, in part, spatially represented.”

“We use spatial manipulations of mental representations all the time as we move through the physical world. As a result, we have readily available cognitive resources to deploy in our attempts to understand what we see. This may extend to our understanding of others’ mental states,” Katharine N. Thakkar, a psychology graduate student at Vanderbilt and the report’s lead author, said. “Separate lines of neuroimaging research have noted involvement of the same brain area, the parietal cortex, during tasks involving visuo-spatial processes and empathy.”

Tags | ,

The Hand

On 04, Jun 2009 | One Comment | In art, books, cognition, neuroscience, physiology, tactility | By David Birnbaum

0679740473The Hand by Frank Wilson is a rare treat. It runs the gamut from anthropology (both the cultural and evolutionary varieties), to psychology, to biography. Wilson interviews an auto mechanic, a pupeteer, a surgeon, a physical therapist, a rock climber, a magician, and others—all with the goal of understanding the extent to which the human hand defines humanness.

Wilson is a neurologist who works with musicians who have been afflicted with debilitating chronic hand pain. As he writes about his many interviews, a few themes emerge that are especially relevant to our interests here.

Incorporation
Incorporation is the phenomenon of internalizing external objects; it’s the feeling that we all get that a tool has become one with our body.

The idea of “becoming one” with a backhoe is no more exotic than the idea of a rider becoming one with a horse or a carpenter becoming one with a hammer, and this phenomenon itself may take its origin from countless monkeys who spent countless eons becoming one with tree branches. The mystical feel comes from the combination of a good mechanical marriage and something in the nervous system that can make an object external to the body feel as if it had sprouted from the hand, foot, or (rarely) some other place on the body where your skin makes contact with it…

The contexts in which this bonding occurs are so varied that there is no single word that adequately conveys either the process or the many variants of its final form. One term that might qualify is “incorporation”—bringing something into, or making it part of, the body. It is a commonplace experience, familiar to anyone who has ever played a musical instrument, eaten with a fork or chopsticks, ridden a bicycle, or driven a car. (p. 63)

Projection
Projection is the ability to use the hand as a bridge for projecting consciousness from one location to another. (Wilson did not use the word “projection” in the book.) In some ways, projection can be seen as the opposite of incorporation. Master puppeteer Anton Bachleitner:

It takes at least three years of work to say you are a puppeteer. The most difficult job technically is to be able to feel the foot contact the floor as it actually happens. The only way to make the puppet look as though it is actually walking is by feeling what is happening through your hands. The other thing which I think you cannot really train for, but only can discover with very long practice and experience, is a change in your own vision.

The best puppeteer after some years will actually see what is happening on the stage as if he himself was located in the head of the puppet, looking out through the puppet’s eyes—he must learn to be in the puppet. This is true not only in the traditional actor’s sense, but in an unusual perceptual sense. The puppeteer stands two meters above the puppet and must be able to see what is on the stage and to move from the puppet’s perspective. Moving is a special problem because of this distance, because the puppet does not move at the same time your hand does. Also, there can be several puppets on the stage at the same time, and to appear realistic they must react to each other as they would in real life. So again the puppeteer must himself be mentally on the stage and able to react as a stage actor would react. This is something I cannot explain, but it is very imprortant for a puppeteer to be able to do this. (pp. 92–93)

Serge Percelly, professional juggler:

[An act is successful] not because you put something in the act that’s really difficult, but because you put something in the act in exactly the right way—in a way that makes it more interesting, not only for me but for the audience as well. I’m just trying somehow to do the act that I would have loved to see. (p. 111)

Skill
Wilson is a musician and a doctor to musicians, so he has special insight into the neurology of musical skill—which he recognizes as special case of manual skill that involves gesture, communication, and emotion.

Musical skill provides the clearest example and the cleanest proof of the existence of a whole class of self-defined, personally distinctive motor skills with an extended training and experience base, strong ties to the individual’s emotional and cognitive development, strong communicative intent, and very high performance standards. Musical skill, in other words, is more than simply praxis, ordinary manual dexterity, or expertness in pantomime. (p. 207)

The upper-limb (or “output”) requirements for an instrumentalist are not unique either; they depend upon the possession of arms, fingers, and thumbs, specific but idiosyncratic limits on the rage of motion at the shoulder, elbow, wrist, hand, and finger joints, variable abilities to achieve repetition rates and forces with specific digital configurations in sequence at multiple contact points on a sound-making device, and so on. Peculiarities in the physical configuration and movement capabisities of the musician’s limbs can be an advantage or disadvantage but are reflected in (and in adverse cases can be overcome through) instrument design: How wide can you make the neck of a guitar? How far apart should the keys be on a piano? Where should the keys be placed on a flute—in general? and for Susan and Peter? (p. 225)

Awareness
Touch experience can be a gateway to awareness, which can in turn heal both the mind and the body. Moshe Feldenkrais invented a form of physical therapy that focuses on stimulating an awareness of touch and movement sensations in order to relieve pain.

Most people slouch, tilt, shuffle, twist, stumble, and hobble along. Why should that be? Was there something wrong with their brains? After considering what dancers and musicians go through to improve control of their movements, [Feldenkrais] guessed that people must either be ignorant of the possibilities or refuse to act on them. So they just heave themselves around, lurching from parking place to office to parking place, utterly oblivious to what they are doing, to their appearance, and even to the sensations that arise from bodily movement. He suspected that people just lose contact with their own bodies. If and when they do notice, it is because they are so stiff that they can’t get out of bed or are in so much pain that they can barely get out of a chair. Then they start noticing…

What [Feldenkrais] was doing did not seem complicated. The goal of the guided movements was not to learn how to move, in the sense of learning to do a new dance step. The goal was not to stretch ligaments or muscles. It was not to increase strength. The goal, as he saw it, was to get the messages moving again and to encourage the brain to pay attention to them. (p. 244)

And his student, Anat Baniel, on the deep psychological roots of movement disorders:

I think working with children has given me this idea, which isn’t often discussed in medicine: a lot of disease—medical disease and emotional “dis-ease”—is an outcome of a lack of full development. It’s not something we can get to just by removing a psychological block…

Of course there are problems due to traumatic events in childhood, or disease—you name it. Feldenkrais said that ideal development would happen if the child was not opposed by a force too big for its strength. When you say to a small child, “Don’t touch that, it’s dangerous!” you create such a forceful inhibition that you actually distort the child’s movement, and growth, in a certain way.

Feldenkrais taught us to look for what isn’t there. Why doesn’t movement happen in the way that it should, given gravity, given the structure of the body, given the brain? For all of us there is a sort of sphere, or range, of movement that should be possible. Some people get only five or ten percent of that sphere, and you have to ask, “What explains the difference between those who get very little and those who get a lot?” Feldenkrais said that the difference is that in the process of development, the body encountered forces that were disproportionate to what the nervous system could absorb without becoming overinhibited—or overly excited, which is a manifestation of the same thing. (p. 252)

Feldenkrais’s approach is fascinating, but there is scant discussion in Wilson’s book about the role of the therapist’s hand in this process. After all, this kind of therapy is wholly reliant on an accidental discovery: that the patient can be made aware of her own body through an external, expert hand radiating pressure and heat. How is this possible? The topic isn’t explored.

There are many, many wonderful things to learn from this book for anyone with an interest in biology, art, music, history, or sports. You can find Frank Wilson on the web at Handoc.com

Tags | , , ,

07

Feb
2009

No Comments

In cognition

By David Birnbaum

Skeptic criticizes cognitive benefits of video games

On 07, Feb 2009 | No Comments | In cognition | By David Birnbaum

How do video games affect cognition? There’s some evidence that they may improve it, but not all are convinced:

A French boffin is pouring scorn upon claims made by Japanese gaming giant Nintendo about the educational value of some of its ‘edutainment’ software.

Games like Big Brain Academy and Brain Training for the handheld Nintendo DS are touted as tools which can test and rejuvinate a user’s brain function, increase blood flow to the brain and improve memory and practical intelligence.

But Professor Alain Lieury from the University of Rennes has recently conducted a scientific survey of ten-year-old human lab rats which he reckons proves that the company’s claims are complete and utter cobblers.

“The Nintendo DS is a technological jewel. As a game it’s fine,” he told The Times, “but it is charlatanism to claim that it is a scientific test.”

Nearly 90 million DS units have been sold, many of them on the seemingly unfounded promise that using the twin-screened handheld console will help the age-addled among us keep our grey matter in tip-top condition, despite years of watching endless reruns of The Simpsons, getting three hours of sleep a night and drinking like vikings.

The prof reckons that both you and your kids will get just as much benefit from working out maths and logic problems using a 10p pencil as a £100 DS console and any amount of £30 software packages.

Beware French boffins pouring scorn!

(via Althouse)

Tags | ,

14

Dec
2008

No Comments

In cognition

By David Birnbaum

Skill and specificity

On 14, Dec 2008 | No Comments | In cognition | By David Birnbaum

Older adults who play the strategy game “Rise of Nations” develop an improvement in general cognitive function:

Decades of laboratory studies designed to improve specific cognitive skills, such as short-term memory, have found again and again that trainees improve almost exclusively on the tasks they perform in the lab – and only under laboratory conditions, Kramer said.

“When you train somebody on a task they tend to improve in that task, whatever it is, but it usually doesn’t transfer much beyond that skill or beyond the particular situation in which they learned it,” he said. “And there are virtually no studies that examine whether there’s any transfer outside the lab to things people care about.”

But my understanding is that there has been lots of research (PDF, 369 KB) indicating that artistic development improves other cognitive domains pretty well. Is this new result surprising because we associate video games with wasted time rather than art making?

Tags |

08

Oct
2008

No Comments

In books
cognition
music
neuroscience

By David Birnbaum

Embodied music cognition

On 08, Oct 2008 | No Comments | In books, cognition, music, neuroscience | By David Birnbaum

6a00c11413d7d0819d00fae8d7c728000b-500piThis is Your Brain on Music is a great introductory book on the neuroscience of music. Although I found it weighted a bit too much toward popular science for my liking, that was its stated purpose, and there was still plenty of good information in it.

Here we have an explanation of musical timing as an analogy for a moving body:

Virtually every culture and civilization considers movement to be an integral part of music making and listening. Rhythm is what we dance to, sway our bodies to, and tap our feet to… It is no coincidence that making music requires the coordinated, rhythmic use of our bodies, and that energy be transmitted from body movements to a musical instrument. (57)

‘Tempo’ refers to the pace of a musical piece—how quickly or slowly it goes by. If you tap your foot or snap your fingers in time to a piece of music, the tempo of the piece will be directly related to how fast or slow you are tapping. If a song is a living, breathing entity, you might think of the tempo as its gait—the rate at which it walks by—or its pulse—the rate at which the heart of the song is beating. The word ‘beat’ indicates the basic unit of measurement in a musical piece; this is also called the ‘tactus’. Most often, this is the natural point at which you would tap your foot or clap your hands or snap your fingers. (59)

Levitin also delves into the possible evolutionary reasons for music, noting that music seems to always go with dance, and that the concept of the expert musical performer is very recent:

When we ask about the evolutionary basis for music, it does no good to think about Britney or Bach. We have to think about what music was like around fifty thousand years ago. The instruments recovered from archeological sites can help us understand what our ancestors used to make music, and what kinds of melodies they listened to. Cave paintings, paintings on stoneware, and other pictorial artifacts can tell us something about the role that music played in daily life. We can also study contemporary societies that have been cut off from civilization as we know it, groups of people who are living in hunter-gatherer lifestyles that have remained unchanged for thousands of years. One striking find is that in every society of which we’re aware, music and dance are inseparable.

The arguments against music as an adaptation consider music only as disembodied sound, and moreover, as performed by an expert class for an audience. But it is only in the last five hundred years that music has become a spectator activity—the thought of a musical concert in which a class of “experts” performed for an appreciative audience was virtually unknown throughout our history as a species. And it has only been in the last hundred years or so that the ties between musical sound and human movement have been minimized. The embodied nature of of music, the indivisibility of movement and sound, the anthropologist John Blacking writes, characterizes music across cultures and across times. (257)

I agree. Even though we may use modern technology to exploit musical cognitive faculties for maximum effect, the idea that music/dance is a counter-evolutionary accident seems wrong to me.

You can find the website that accompanies the book at yourbrainonmusic.com.

Tags | ,

Whiskers as haptic sensor arrays

On 26, Feb 2008 | No Comments | In cognition, neuroscience, physiology, robotics | By David Birnbaum

Whiskers provide animals with complex perceptual content. In fact, all the things that whiskers actually do are fascinating.

The dimensionality of the data can be modeled according to how an animal moves them through space:

Rat whiskers move actively in one dimension, rotating at their base in a plane roughly parallel to the ground. When the whiskers hit an object, they can be deflected backwards, upwards or downwards by contact with the object. The mechanical bending of the whisker activates many thousands of sensory receptors located in the follicle at the whisker base. The receptors, in turn, send neural signals to the brain, where a three-dimensional image is presumably generated.

Hartmann and Solomon showed that their robotic whiskers could extract information about object shape by “whisking” (sweeping) the whiskers across a small sculpted head, which was chosen specifically for its complex shape. As the whiskers move across the object, strain gauges sense the bending of the whiskers and thus determine the location of different points on the head. A computer program then “connects the dots” to create a three-dimensional representation of the object.

More on that “three-dimensional image” from the end of the first paragraph — whiskers indeed construct a high resolution spatial map:

Based on discoveries in primates and cats, scientists previously thought that highly refined maps representing the complexities of the external world were the exclusive domain of the visual cortex in mammals. This new map is a miniature schematic, representing the direction a whisker is moved when it brushes against an object.

“This study is a great counter example to the prevailing view that only the visual cortex has beautiful, overlapping, multiplexed maps,” said Christopher Moore, a principal investigator at the McGovern Institute and an assistant professor in the Department of Brain and Cognitive Sciences, where he holds the Mitsui Career Development Chair.

Researchers are now working towards developing code for a whisker-like sensor array to be used for robotics. Could this software have human interface applications as well?

This reminds me of the impressive and thought-provoking Haptic Radar/Extended Skin Project. Although the sensing medium in that case was ultrasound rather than a deformable, physical substrate, and the resolution of the stimulators much lower, the researchers state that they intend to make the system more whisker-like as they develop it.

[via Science Daily]

Tags | ,